或者我们也可以从加快金星自转速度的方面入手,比如用天体去碰撞金星表面或用直径大于96.5千米的天体近距离飞掠。也有人提议用质量加速器或动态压缩装置(研究设想的利用磁场加速质量流的一种装置)产生加快金星自转所需的力,最终使其昼夜变换周期变得与地球相同。
还有一种可能的解决途径是移除金星的部分大气,这有很多方法都可以实现。例如,让天体撞击金星表面可以把一部分大气层吹散进外太空。其他的方法包括太空电梯和质量加速器(放置在云层上方的气球或平台上较为理想),可以逐渐收集大气层中的气体然后把它们赶入太空里去。
好处多多
殖民金星并把它的气候转化成适宜人类居住的主要原因之一,就是为人类创造一个“备用基地”。考虑到可选择的范围——火星,月亮还有外太阳系,金星有好几个其他地方不具备的优势。这也就是为什么金星经常被称作地球的“姐妹星”。
首先,金星是一个在尺寸、质量和组成上都与地球相近的类地行星。因此金星的重力与地球接近,大约是地球的90%(确切的说是0.904 g)。因此,人类在金星上就不太可能会因长期生活在失重和微重力环境下引发健康问题——比如骨质疏松和肌肉衰退。
由于距地球相对较近,比起太阳系的其他地方,我们与金星之间运输和通信也更容易。用现有的推进系统,地球到金星的发射窗口会每隔584天出现一次,与之相比,火星的窗口周期有780天之长。因为金星也是距地球最近的行星,登陆金星所需的飞行时间也更短。它距地最近只有40万千米,而火星则有55万千米。
另一个原因与金星的失控温室效应有关。失控的温室效应导致这个星球温度极高并拥有浓厚的大气层。在金星上检验诸多生态工程技术的过程中,我们的科学家可以更好地认识这些技术的效果。这些信息反过为我们对抗地球气候变化的斗争提供有利帮助。
在未来的十年里,这个斗争很可能会变得更为激烈。根据美国海洋和大气局(NOAA)在2015年3月的报告,大气中的二氧化碳水平目前已超过400ppm,这是自从上新世以来就没有出现过的数值,而那时的温度和海平面都比现在高很多。根据NASA用计算机模拟出的一系列可能出现的图景,这个趋势很可能要持续到2100年,将会带来严峻的后果。
在其中一个图景中,二氧化碳排放量在本世纪末将趋于平稳,水平大约保持在550 ppm,导致全球温度升高2.5 ℃。在第二个图景中,二氧化碳排放量会升高到800 ppm,导致平均温度升高4.5 ℃。第一个图景预测的温度升高还是可以忍受的,但在第二个图景里,地球上很多地方人的生活都无法维持下去了。
所以除了为人类创造第二个栖息地之外,金星改造也会帮助确保地球仍是我们舒适的家园。当然,金星作为类地行星的事实意味着它有着丰富的自然资源供我们开采,这也会帮助人类实现“后匮乏(post-scarcity)”经济。
艰巨的挑战
尽管金星和地球相似度较高(即在体积,质量和成分上的相似),但也有很多会给改造和移民带来严峻挑战的差异存在。比方说,给金星大气降温降压需要大量的能量和资源。还需要花费高昂的代价去建造原本没有的基础设施。
例如,要把金星大气层温度降低到足以遏制失控温室效应的程度,我们需要非常非常多的金属和先进材料去建造一面足够大的轨道遮阳罩。这样的结构如果放置在拉格朗日点L1,直径需要是金星本身的四倍。而且还需要一支庞大的装配机器人队伍在外太空完成遮阳罩的组装。
而与之相比,增加金星的自转速度需要巨大的能量,更别提那么多需要从外太阳系-主要是柯伊伯带弄过来的撞击天体了。在所有这些设想中,一支足够庞大的太空舰队都是必须的,我们要依靠它们来运送必须的原材料,而且它们还需要先进的动力系统才能保证在可接受的时间内完成任务。
而现今还没有满足这项要求的动力系统,传统的推进方式——从离子发动机和化学推进剂都既无法提供足够快的速度也不够经济便宜。看了这个实例你就明白了, NASA的“新视野”号花了11年多的时间与柯伊伯带的冥王星相会,用的就是引力辅助的传统火箭推进器。
与此同时,在依靠离子推进完成的“黎明”号(Dawn )任务中,从地球到小行星带灶神星的旅程耗时将近4年。而要实现多次往返柯伊伯带拉回冰冻彗星和小行星的任务,不论用哪种推进方法都无法做到,况且制造出所需的大规模舰队对现在我们来说还是一个遥不可及的梦想。
在云层上方架设反射镜的计划同样也面临着资源缺乏(或太难获取)的问题。不但需要大量的材料,我们还要确保在大气层转化后的很长时间内这些材料仍能维持在原有位置,因为金星表面目前是完全被云层覆盖的。考虑到金星的云层已经有很高的反射率了,所以我们采取的任何措施都必须使反射率得到大幅提升(显著超出现有的0.65),这样才会有效果。